ON THE KINETIC FOCI OF A CONSERVATIVE SYSTEM FOR ISOENERGETIC TRAJECTORIES
 (O KINETICHESKIKH FOKUSAKG KONSERVATIVNOI SISTEMY DLIA ISOENERGETICHESKIKH TRAEXTORII)

PMM Vol.30, N o, 1966, pp. 1128-1132
E.E.PEISAKH
(Leningrad)
(Recelved January 6, 1966)

The question as to the character of the Lagrange action extremum and the related problem of kinetic foci for isoenergetic trajcctorics are dealt with in the book by Thomson and Ta1t [1], Bobylev's paper [2], and Suslov's book [3]. Thomson applied the theory of kinetic foci to the study of the orbital stability of the specified motion of a conservative system. He was followed in this by Routh and Zhukovskii.

The familiar method of determining kinetic foci for isoenergetic trajectories [2] involves expressing the generalized coordinates q_{2}, \ldots, q_{n} of the system in terms of the coordinate q_{1} from the differential equations of the trajectories in Jacobian form,

$$
\begin{equation*}
\left.\frac{d}{d q_{1}} \frac{\partial V}{\partial q_{i}^{i}}-\frac{V \sqrt{h}}{\partial q_{i}}=0 \quad, \cdots \cdots, n\right) \tag{13}
\end{equation*}
$$

where the function R is given by

$$
R=: \because(h-I 1) \sum_{s=1}^{n} \sum_{k=1}^{n} a_{s i} / v_{1}
$$

(the primes denote differentiation with respect to q_{1}). Here Π and h are the potential energy and the total energy of the system, respectively ($h=$ const) ; $a_{z k}$ are the coefficients of the quadratic form which represents the kinetic energy T in the case of a conservative system. Realization of the known method requires one to solve system of differential equations (1) in the form

$$
\begin{equation*}
q_{i}=f_{i}\left(q_{1}, h,\left(c_{3}, \ldots, c_{2 n}\right) \quad(i=2 \ldots . n)\right. \tag{2}
\end{equation*}
$$

Here $c_{3}, \ldots, c_{2 n}$ are arbitrary constants. The next step is to solve Equation

$$
\left.\left.\left.\left\lvert\, \begin{array}{ccccc}
\left(\partial f_{2} / \partial c_{3}\right)_{n} & \left(\partial f_{2} / \partial c_{4}\right)_{0} & \cdots & \left(\partial f_{2} / \partial c_{22} l_{n}\right. \tag{3}\\
\cdot & \cdot & \cdot & \cdot & \cdots
\end{array}\right.\right) \cdot \cdot \cdot \cdot \cdot \cdot \cdot\left(\partial f_{n}\right) \cdot \partial c_{2 n}\right)_{1}\right)=0
$$

for $q_{1}^{(1)}$. In this equation the subscript 0 denotes the initial position of the system, and the subscript 1 its position which is the kinetic focus
conjugate to the initial position. However, functions of the form (2) can be obtained from trajectory equations (l) only in the simplest cases due to the difficuity of integrating Equations (1)). This limits the applicability of the familiar method (*).

We shall present a method for determining the kinetic foci for isoenergetic systems which is based on the direct use of the equations of motion of a conservative system (**).

Let the totality of functions

$$
\begin{equation*}
q_{i}=q_{i}\left(t, c_{1}, \ldots r_{2}\right) \quad(i-1 \ldots, n) \tag{4}
\end{equation*}
$$

be the general solution of the system of differential equations of motion of a conservative system (we shall consider the most general case, 1.e. that in which the solution contains ∂n constants but does not represent a Cauchy integral).

For fixed values of the constants $c_{1}, \ldots, c_{2 n}$, Equations (4) define some true path of the system. Supplementing the constants with the infinitely small increments (variations) δc_{k}, we obtain the path

$$
\begin{equation*}
q_{i}^{*}=q_{i}\left(t, r_{1}-\delta r_{1}, \ldots c_{2 n}+\delta c_{21}\right) \quad(i=1, \ldots, n) \tag{5}
\end{equation*}
$$

which is infinitely close to the path (4) and-is also a true path. The variations in the generalized coordinates upon transition from path (4) to path (5) are

$$
\begin{equation*}
\delta q_{i}=\sum_{k==1}^{2 n} \frac{\partial \eta_{i}}{\partial c_{k}} \delta c_{k} \quad(i=1, \ldots, n) \tag{6}
\end{equation*}
$$

Let paths (4) and (5) intersect at some position M_{0} at the instant $t=t_{0}$. Then the variations δc_{k} must satisfy the conditions

$$
\begin{equation*}
\sum_{k=1}^{2 n}\left(\frac{\partial q_{i}}{\partial c_{k}}\right)_{t=t_{0}} \delta r_{k}=0 \quad(i=1, \ldots, n) \tag{7}
\end{equation*}
$$

Eliminating the time t from the equations of motion (4), we obtain the equations of the system trajectory. We express t in terms of the coordinate q_{1} from the first equation of system (4),

$$
\begin{equation*}
t=\tau\left(q_{1}, c_{1}, \ldots, c_{2 n}\right) \tag{8}
\end{equation*}
$$

Upon substitution from (8) into the other ($n-1$) equations of (4), we obtain the equations of the trajectory which corresponds to path (4),

$$
\begin{equation*}
q_{i}=q_{i}\left[\tau\left(q_{1}, c_{1}, \ldots, c_{2 n}\right), c_{1}, \ldots ., c_{2 n}\right] \equiv \varphi_{i}\left(q_{1}, c_{1}, \ldots, c_{2 n}\right) \quad\left(i=2, \ldots,{ }_{2}\right) \tag{9}
\end{equation*}
$$

Eliminating the time t from the equations of motion for path (5) by a similar procedure, we obtain the equations of the trajectory corresponding to path (5)

$$
\begin{equation*}
q_{i}^{*}=\varphi_{i}\left(g_{1}, c_{1}+\delta_{c_{1}}, \ldots, c_{2 n}+\delta_{c 2 n}\right) \quad(i=2, \ldots n) \tag{10}
\end{equation*}
$$

The variations in the coordinates upon transition from trajectory (9) to trajectory (10) are

[^0]\[

$$
\begin{equation*}
\delta q_{i}=\sum_{k=1}^{2 n} \frac{\partial \varphi_{i}}{\partial c_{k}} \delta c_{k} \quad(i=2, \ldots, n) \tag{11}
\end{equation*}
$$

\]

Since paths (4) and (5) intersect at $t=t_{0}$, the corresponding trajectories (9) and (10) also intersect at $q_{1}=q_{10}$ in the position M_{0} (here q_{10} is the value of the constant q_{1} at $t=t_{0}$. We arrive at the system of equations

$$
\begin{equation*}
\sum_{k=1}^{2 n}\left(\frac{\partial \varphi_{i}}{\partial c_{k}}\right)_{q_{1}=q_{10}} \delta c_{k}=0 \quad(i=2, \ldots, n) \tag{12}
\end{equation*}
$$

The system of $(n-1)$ equations (12) and Equation

$$
\begin{equation*}
\sum_{k=1}^{2 n}\left(\frac{\partial q_{1}}{\partial c_{k}}\right)_{t=t_{0}} \delta c_{k}=0 \tag{13}
\end{equation*}
$$

are equivalent in the sistem of n Equations (7), i.e. they are fulfilled for the same values of the variations δc_{k}.

Let us suppose that in addition to the position N_{0}, the infinitely close trajectories (9) and (10) intersect at yet another position M_{1}. If the same constant value of the total mechanical energy h is retained on both trajectories, then the positions M_{0} and N_{1} of the conservative system are called conjugate kinetic foci for isoenergetic trajectories.

Since the total mechanical energy h on initial trajectory (9) is a function of the constants

$$
\begin{equation*}
h=h\left(c_{1}, \ldots, c_{2 n}\right) \tag{14}
\end{equation*}
$$

1t follows that trajectories (9) and (10) are isoenergetic provided that

$$
\begin{equation*}
\delta h=\sum_{k=1}^{2 n} \frac{\partial h}{\partial c_{k}} \delta c_{k}=0 \tag{15}
\end{equation*}
$$

Trajectories (9) and (10) intersect in the position M_{1} (for $q_{1}=q_{11}$) if the conditions
are fulfilled.

$$
\begin{equation*}
\delta q_{i}^{(1)}=\sum_{k=1}^{\varrho n}\left(\frac{\partial \varphi_{i}}{\partial c_{k}}\right)_{q_{\mathrm{t}}=q_{11}} \delta c_{k}=0 \quad(i=2, \ldots, n) \tag{16}
\end{equation*}
$$

Thus, the two positions M_{0} and N_{1} are conjugate kinetic foci if there exist values of the variations $\delta 0, \ldots, \delta c_{2 n}$ which satisfy the homogeneous system of $2 n$ inear equations (12), (13), (15) and (16).

Let us reduce the indicated system of $2 n$ equations to a system of ($2 n-2$) equations. We begin by eliminating the variations δc_{1} and δc_{2} from Equations (13) and (15),

$$
\begin{aligned}
& \delta c_{1}=\left[\frac{\partial h}{\partial c_{2}}\left(\frac{\partial q_{1}}{\partial c_{1}}\right)_{t=t_{0}}-\frac{\partial h}{\partial c_{1}}\left(\frac{\partial q_{1}}{\partial c_{2}}\right)_{t=t_{0}}\right]^{-1} \sum_{k=3}^{2 n}\left[\frac{\partial h}{\partial c_{k}}\left(\frac{\partial q_{1}}{\partial c_{2}}\right)_{t=t_{0}}-\frac{\partial h}{\partial c_{2}}\left(\frac{\partial q_{1}}{\partial c_{k}}\right)_{t=t_{0}}\right] \delta c_{k} \\
& \delta c_{2}=\left[\frac{\partial h}{\partial c_{2}}\left(\frac{\partial q_{1}}{\partial c_{1}}\right)_{t=t_{0}}-\frac{\partial h}{\partial c_{1}}\left(\frac{\partial q_{1}}{\partial c_{2}}\right)_{t=t_{0}}\right]^{-1} \sum_{k=3}^{2 n}\left[\frac{\partial h}{\partial c_{k}}\left(\frac{\partial q_{1}}{\partial c_{1}}\right)_{t=t_{0}}-\frac{\partial h}{\partial c_{1}}\left(\frac{\partial q_{1}}{\partial c_{k}}\right)_{t=t_{0}}\right] \delta c_{k}
\end{aligned}
$$

Substituting these values of δc_{1} and δc_{2} into Equations (12) and (16), we carry out some transformations and arrive at the homogeneous system of (2 - 2) Iinear equations

$$
\begin{equation*}
\sum_{k=3}^{2 n} D_{i k}{ }^{(0)} \delta c_{k}=0, \quad \sum_{k=3}^{2 n} D_{i k}^{(1)} \delta c_{k}=0 \quad(i=2, \ldots, n) \tag{17}
\end{equation*}
$$

Here $D_{i k}{ }^{(0)}$ and $D_{i k}{ }^{(1)}$ are values of the Jacobian

$$
D_{i k}=\left|\begin{array}{lll}
\partial \varphi_{i} / \partial c_{k} & \partial \varphi_{i} / \partial c_{2} & \partial \varphi_{i} / \partial c_{1} \tag{18}\\
\partial h / \partial c_{k} & \partial h / \partial c_{2} & \partial h / \partial c_{1} \\
\left(\partial q_{1} / \partial c_{k}\right)_{t=t_{0}} & \left(\partial q_{1} / \partial c_{2}\right)_{t=t_{0}} & \left(\partial q_{1} / \partial c_{1}\right)_{t=t_{0}}
\end{array}\right| \quad\binom{i=2, \ldots, n}{k=3, \ldots, 2 n}
$$

for $q_{1}=q_{10}$ and $q_{1}=q_{21}$.
For further transformation of the Jacobian $D_{1 k}$ we make use of the identities

$$
\begin{equation*}
q_{1}\left[\tau\left(q_{1}, c_{1}, \ldots, c_{2 n}\right), c_{1}, \ldots, c_{2 n}\right] \equiv q_{1} \tag{19}
\end{equation*}
$$

$$
\begin{equation*}
q_{i}\left[\tau\left(q_{1}, c_{1}, \ldots, c_{2 n}\right), c_{1}, \ldots, c_{2 n}\right] \equiv \varphi_{i}\left(q_{1}, c_{1}, \ldots, c_{2 n}\right) \quad(i=2, \ldots, n) \tag{20}
\end{equation*}
$$

Differentiating the left- and right-hand sides of these identities with respect to an arbitrary constant c_{k}, we obtain

$$
\begin{gather*}
\frac{\partial q_{1}}{\partial c_{k}}+\frac{\partial q_{1}}{\partial \tau} \frac{\partial \tau}{\partial c_{k}}=0 \quad(k=1, \ldots, 2 n) \tag{21}\\
\frac{\partial q_{i}}{\partial c_{k}}+\frac{\partial q_{i}}{\partial \tau} \frac{\partial \tau}{\partial c_{k}}=\frac{\partial \varphi_{i}}{\partial c_{k}} \quad(i=2, \ldots, n ; k=1, \ldots, 2 n)
\end{gather*}
$$

From Equations (21) we determine $\partial \tau / \partial c_{k}$ and then substitute these quantities into Equations (22). We then have

$$
\begin{equation*}
\frac{\partial \varphi_{i}}{\partial c_{k}}=\frac{\partial q_{i}}{\partial c_{k}}-\frac{\partial q_{1}}{\partial c_{k}} \frac{\partial q_{i}}{\partial \tau}\left(\frac{\partial q_{1}}{\partial \tau}\right)^{-1} \quad(i=2, \ldots, n ; k=1, \ldots, 2 n) \tag{23}
\end{equation*}
$$

If we now replace $\partial \varphi_{1} / \partial c_{k}$ in Expression (18) for the Jacobian $D_{1 k}$ on the basis of Equations (23), converting in them from independent variable q_{1} to the independent variable t by replacing τ by t, and then substitute the expression $D_{1 k}$ thus transformed into Equations (17), the latter become

$$
\begin{equation*}
\sum_{k=3}^{2 n} B_{i k}{ }^{(0)} \delta c_{k}=0, \quad \sum_{k=3}^{2 n} B_{i k}^{(1)} \delta c_{k}=0 \quad(i=2, \ldots, n) \tag{1}
\end{equation*}
$$

where $B_{i k}{ }^{(0)}$ and $B_{i k}{ }^{(1)}$ are the values of the Jacobian

$$
B_{i k}=\left|\begin{array}{lllc}
\partial q_{i} / \partial c_{1} & \partial q_{i} / \partial c_{2} & \partial q_{i} / \partial c_{k} & \partial q_{i} / \partial t \tag{25}\\
\partial q_{1} / \partial c_{1} & \partial q_{1} / \partial c_{2} & \partial q_{1} / \partial c_{k} & \partial q_{1} / \partial t \\
\left(\partial q_{1} / \partial c_{1}\right)_{t=t_{0}} & \left(\partial q_{1} / \partial c_{2}\right)_{l=t_{0}} & \left(\partial q_{1} / \partial c_{k}\right)_{t=t_{0}} & 0 \\
\partial h / \partial c_{1} & \partial h / \partial c_{2} & \partial h / \partial c_{k} & 0
\end{array}\right| \quad\binom{i=2, \ldots, n}{k=3, \ldots, 2 n}
$$

for $t=t_{0}$ and $t=t_{1}$. (We note that t_{1} is the instant at which the system attains the kinetic focus N_{1}, proceeding along the initial trajectory (9); the time of the travel from M_{0} to M_{1} along trajectory (10) may, generaliy speaking, not coincide with the time of motion along the initial trajectory).

The system of homogeneous equations (24) admits of a nontivial solution for $\delta c_{3}, \ldots, \delta 0_{2 \mathrm{a}}$ if its determinant vanishes, i.e. if

$$
\left.\Delta\left(t_{1}, t_{0}\right)=\left\lvert\, \begin{array}{cccc}
B_{2,}{ }_{3}^{(0)} & B_{2},{ }_{4}^{(0)} & \ldots & B_{2,2 n}^{(0)} \tag{26}\\
\cdots & \cdots & \cdots & \ldots
\end{array}\right.\right)
$$

Having determined the root t_{1} of Equation (26) which is closest to
$t_{0}\left(t_{1}>t_{0}\right)$, we obtain the instant at which the kinetic focus (*) conjugate to the position of the conservative system at $t=t_{0}$ for isoenergetic trajectories is attained. To determine the coordinates of the kinetic focus, one must substitute the resulting value of t_{1} into the equations of motion of system (4).
$E x$ a mple 1 . A material point of mass $m=1$ is moving in a constant gravitational field. The equations of the point's motion are

$$
\begin{equation*}
q_{1}=t_{1}-c_{2} t_{4} \quad q_{2}=c_{3}-q_{1} t-1 t_{2} g t^{2} \tag{27}
\end{equation*}
$$

The total mechanical energy is

$$
\begin{equation*}
h=1 / 2\left(c_{2}^{2}+c_{4}^{2}+2 g c_{3}\right) \tag{28}
\end{equation*}
$$

Let us find the kinetic focus conjugate to the initial position of the point at the instant $t=t_{0}$. Equation (26) in this case becomes

Since

$$
\begin{array}{ll}
B_{23}=\left|\begin{array}{cccc}
0 & 0 & 1 & \left(c_{1}-g t\right) \\
1 & t & 0 & c_{2} \\
1 & t_{0} & 0 & 0 \\
0 & c_{2} & g & 0
\end{array}\right| & B_{24}=\left|\begin{array}{cccc}
0 & 0 & t & \left(c_{4}-g t\right) \\
1 & t & 0 & c_{2} \\
1 & t_{0} & 0 & 0 \\
0 & c_{2} & c_{4} & 0
\end{array}\right| \\
B_{23}=c_{2}^{2}+g\left(c_{4}-g t\right)\left(t-t_{0}\right), & B_{24}=c_{2}^{2} t-c_{1}\left(c_{4}-g t\right)\left(t-t_{1}\right)
\end{array}
$$

Solving Equation (29) for t_{1}, we obtain

$$
\begin{equation*}
t_{1}=\frac{c_{2}^{2}+c_{4}^{2}-c_{4} g t_{0}}{g\left(c_{4}-g t_{0}\right)} \tag{3n}
\end{equation*}
$$

In substituting the resulting expression for t_{1} into Equations (2.7), we determine the coordinates of the kinetic focus (for $t_{0}=0$)

$$
\begin{equation*}
q_{11}=c_{1}+\frac{c_{2}\left(c_{2}^{2}-1-c_{4}{ }^{\circ}\right)}{g c_{4}}, \quad q_{11}=c_{3}+\frac{c_{4}^{4}--c_{2}^{1}}{2 g c_{4}^{2}} \tag{31}
\end{equation*}
$$

The same result, can be obtained through the use of the familiar method (see Lur'e's book [4], p.729).

In the case where we know the the general solution of the system of differential equations of motion of the conservative system and where this solution represents a Cauchy integral,

$$
\begin{equation*}
q_{i}=q_{i}\left(t, q_{10}, \ldots, q_{n 0}, q_{10^{*}}, \ldots, q_{n 0}\right) \quad(i=1 \ldots, n) \tag{3}
\end{equation*}
$$

the instant $t=t_{1}$ at which the kinetic focus is attalned is found as that root of the equation (cited without derivation)

$$
\begin{align*}
& \Delta\left(t, t_{n}\right)=\left|\begin{array}{lllll}
I_{22} & i_{33} & \cdots & A_{2 n} \\
A_{32} & i_{3 n} & \cdots & A_{3 n} \\
\cdots & \cdots & \cdots & A_{3} \\
i_{n 2} & i_{n a} & \cdots & \cdots & i_{n n}
\end{array}\right|=0
\end{align*}
$$

which is closest to t_{0}

[^1]Example 2. Two material points of masses $m_{1}=m_{2}=1$ connected by weightless rigid rod of length $\ell=1$ are moving in a vertical plane in a constant gravitational field. The initial conditions are specified at $t=t_{0}=0$. We are to determine the kinetic focus conjugate to the initial position of the system.

For our generalized coordinates q_{1}, q_{2}, q_{3} we take the two Cartesian coordinates of one of the points and the angle of rotation of the rod. The equations of motion of the system are of the form

$$
\begin{aligned}
& q_{1}=-1 / 2 \cos \left(q_{30}{ }^{\circ} t+q_{30}\right)+\left(q_{\left.10^{\circ}-1 / 2 q_{30}{ }^{\circ} \sin q_{30}\right) t+\left(q_{10}+1 / 2 \cos q_{30}\right)}^{q_{2}=-1 / 2 \sin \left(q_{30}{ }^{\circ} t+q_{30}\right)-1 / 2 g t^{2}+\left(q_{20}{ }^{\circ}+1 / 2 q_{30}{ }^{\circ} \cos q_{30}\right) t+\left(q_{20}-1 / 2 \sin q_{30}\right)}\right. \\
& q_{3}=q_{30}{ }^{\circ} t+q_{30}
\end{aligned}
$$

The total mechanical energy is

$$
\left.h=1 / 2\left(q_{10^{\circ}}{ }^{\circ} \div q_{20^{*}}\right)+\frac{1}{2}\left[\left(q_{10^{\circ}}-q_{30} \sin q_{30}\right)^{\prime}+\left(q_{20}+q_{30^{\circ}} \cos q_{30}\right)^{2}\right]-q^{2} q_{20}+\sin q_{30}\right)
$$

Equation (33) in this case is of the form

$$
\Delta\left(t, t_{0}\right)=\left|\begin{array}{ll}
A_{22} & A_{23} \tag{3ti}\\
A_{32} & A_{33}
\end{array}\right|=0
$$

where $A_{1 k}(t, k=2,3)$ is a determinant of the form (34). The root of Equation (36) is

$$
\begin{equation*}
t_{1}=\frac{\left(q_{10^{\circ}}{ }^{2}+q_{20^{\circ}}\right)+\left(q_{10^{\circ}}-q_{30^{\circ}} \sin q_{30}\right)^{2}+\left(q_{20}{ }^{\circ}+q_{30}{ }^{\circ} \cos q_{30} \dot{ }^{2}\right.}{g\left(2 q_{20^{\circ}-1}^{-}-q_{30}{ }^{\circ} \cos q_{30}\right)} \tag{37}
\end{equation*}
$$

Substituting the resulting value $t=t_{1}$ into equation of motion (34), we obtain the coordinates of the required kinetic focus.

BIBLIOGRAPHY

1. Thomson, W. and Tait, P., Treatise on Natural Philosophy; Part I, Vol.l, Cambridge, 1890.
2. Bobylev, D.K., o nachale Gamil'tona ili Ostrogradskogo 1 o nachale naimen'shego deistvila Lagranzha (On the Hamilton or Ostrogradski1 principle and the least action principle of Lagrange). Academy of Sciences, St.Petersburg, 1889.
3. Suslov, G.K., Teoreticheskaia mekhanika (Theoretical Mechanics). 3rd revised ed., Gostekhizdat, Moscow-Leningrad, 1944.
4. Lur'e, A.I., Analiticheskaia mekhanika (Analytical Mechanics). Fizmatgiz, Moscow, 1961.

[^0]: *) We note that solution (2) of the system of trajectory equations (1) as a rule cannot be found in cases where one knows the equations of motion $q_{i}=q_{i}\left(t, c_{1}, \ldots, c_{2 n}\right)(i=1, \ldots, n)$, ootained by integrating the dififerential equations of motion of the system (second-kind Lagrange equations). In these cases functions (2) might conceivably be obtained from the equations of motion by eliminating from them the time t and by expressing two of their constants (e.g. c_{1} and ${ }_{(0)} c_{2}$) in terms of the other constants and in term of h of the equations: $q_{1}{ }^{(0)} \stackrel{c_{2}}{=} q_{1}\left(t_{0}, c_{1}, \ldots, c_{2}\right), h=h\left(r_{1}, \ldots, c_{2 n}\right)$. However, the mathematical difficulties involved usually render this technique for obtaining functions (2) useless.
 **) We note that the kinetic foci for simultaneous paths (1.e. paths of the type considered in the Hamilton principle) are determined directly from the equations of motion of the system.

[^1]: *) If Equation (26) does not have a root $t_{1}=t_{0}$, then a kinetic focus does not exist.

