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The question as to the character of the Lagrange action extremum and the 
related problem of kinetic foci for lsoenergetic trajectories are dealt with 
in the book by Thomson and Tait El], Bobylev's paper [2], and Suslov's book 
c33. Thomson applied the theory of kinetic foci to the study of the orbital 
stability of the specified motion of a Conservative system. He was followed 
In this by Routh and Zhukovskii. 

The familiar method of determining kinetic foci for isoenergetic trajec- 
tories [z] involves expressing the generalized coordinates 929..'> PII of 
the system In terms of the coordinate q1 from the differential equations of 
the traJectories In Jacobian form, 

where the function R is given by 
II n 

R : ~" ~/t-Ii) ~ ~ nir;'/."/ri' 
RZ.l Ii --1 

(the primes denote differentiation with respect to gl). Here II and h 
are the potential energy and the total energy of the system, respectively 
(h = const) ; a,, are the coefficients of the quadratic form which repre- 
sents the kinetic energy T In the case of a conservative system. Realiza- 
tion of the known method requires one to solve system of differential equa- 
tions (1) In the form 

'Ir = j&; l~~~;C;,f'~~~nstan~s= L'. - * .’ If) (2) 

Here Q,..., czn . The next step is to solve 
Equation 

(af?/i)c~)n (df?/oCq)O . . . (aj$ic or,41 1 ir 

. . . . . . . . : . . . . . . . . . 

(3j, /C%~)~ (('j,,/dcp)0 . . (dfn, fi(*anic~ ’ 
(i3fz / kksh (dj? / WI . . . (c)f: i irc,,h 

zz 0 (3) 
. . * , * . . * . . . . . . . . f . 

(af,, / xh to/= :: ilc& . * f ($f, ,' i'c‘& 

for 91 (I'.. In this equation the subscript 0 denotes the initial position 
of the system, and the subscript 1 Its position which is the kinetic focus 
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conjugate to the initial position. However, functions of the form 2) can be 
obtained from traJectory equations (1) on1 
the difficulty of integrating Equations (1 s 

I in the simplest cases due to 
). This limits the appllcablllty 

of the familiar method (*). 

We shall present a method for determining the kinetic foci for isoenerge- 
tic systems which is based on the direct use of the equations of motion of 
a conservative system (**). 

Let the totality of functions 

vi ‘/, (t, Cl, I’?, 1 (’ - I. .(/,I I :; 

be the general solution of the system of differential equations of motion of 
a conservative system (we shall consider the most general case, i.e. that in 
which the solution contains '3~ constants but does not represent a Cauchy 
integral). 

Fcr fixed values of the constants cl,..., cZn , Equations (4) define some 
true path of the system. Su plementing the constants with the lnflnitely 
small increments (variations P 6c, , we obtaln the path 

Qi* = q,(I, i‘l hf.,, . . . . cz,, + bcz,,) (i = 1. . ., n) (5) 

which is InfInitely close to the path (4) and.is also a true path. The varl- 
ations in the generalized coordinates upon transition from path (4) to path 
(5) are 

,sqi z z : (2~ 6cl, (i:=1,...,il) c(i) 

ii--l Ic 

Let paths (4) and (5) intersect at some position M, at the instant t; t,. 
Then the variations bc, must satisfy the conditions 

6’cp; .x (1 (i = 1,. . ., II) 
o 

(7) 

Eliminating the time t from the equations of motion (4), we obtain the 
equations of the system trajectory. We express t in terms of the coordi- 
nate q1 from the first equation of system (4), 

t =T (q1, Cl, . . .t cm) (8) 
Upon substitution from (8) Into the other (n - 1') equations of (4), we 

obtain the equations of the trajectory which corresponds to path (4), 

Eliminating the time t from the equations of motion for path (5) by a 
similar procedure, we obtain the equations of the trajectory corresponding 
to Path (5) 

Qi * =w(q1, Cl + h, . . ., Cm + &,,I) (i=2,. n! . .1 

The variations in the coordinates upon transition from trajectory (9) to 
trajectory (10) are 

*) We note that solution (2) of the system of trajectory equations (1) as 
a rule cannot be found in cases where one knows the equations of motion 
qi = qj(l, Cl, . . ., C n) (i ?= 1, . 4, obtained by integrating the differential 
equations of motfon of the &Atem (second-kind Lagrange equations). In these 
cases functions (2) might conceivably be obtained from the equations of 
motion by eliminating from them the time t 
constants (e.g. 

and by expressing two of their 
cl and ,o,~z) in t erms of the other constants and In term of 

h of the equations: q, - q1 (t”, Cl, ., cy,J, IL = /l (‘.,, . . .( (..‘l,). However, the 
mathematical difficulties involved usually render this technique for obtaln- 
lng functions (2) useless. 

**) We note that the kinetic foci for simultaneous paths (i.e. paths of the 
type considered in the Hamilton principle) are determined directly from the 
equations of motion of the system. 
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2n 

6Tiz 2 gL6CS (i=2,.. .) n) (11) 
k=l 

tories (9 and 10) also intersect at ql= Since paths t 
4) and (5) Intersect at t = to , the corresponding trajec- 

10 In the position M, (here &, 
is the value of the constant q1 at t = t, . 1 We arrive at the system of 
equations 211 

E(""'i 

k=l 
ac' 

6c,,= 0 (; r= 2,. . ., 12) (12) 
k 91=91o 

The system of (n - 1) equations (12)and Equation 

]$ ($l;l *Ck=o 0 
(13) 

are equivalent in the slstem of n Equations (7), i.e. they are fulfilled 
for the same values of the variations bc, . 

Let us sup ose that In addition to the position & , the Infinitely close 
trajectories ‘i 9) and (10) Intersect at yet another position H, . If the 
same constant value of the total mechanical energy .h Is retained on both 
trajectories, then the positions & and N1 of the conservative system are 
called conjugate kinetic foci for lsoenergetic trajectories. 

Since the total mechanical energy h on initial trajectory (9) Is a func- 
tion of the constants 

h = h (Cl, . . ., czn) (i4) 

It follows that trajectories (9) and (10) are lsoenergetlc provided that 

(El! 

Trajectories (9) and (10) intersect in the position M, (for Q1= Qll) if 
the conditions 

3, 

8Q-o (isa,..., n) (16) 

are fulfilled. 

Thus, the two positions Me and Ml are conjugate kinetic foci if there 
exist values of the variations bo, which satisfy the homogeneous 
system of 2n linear equations (12j.(i4):?%) and (16). 

Let us reduce the Indicated system of % equations to a system of 
(a - 2) equations. We begin by eliminating the variations bc, and bc, 
from Equations (13) and (15), 

Substituting these values of bC, and ba, Into Equations (12) and (16), 
out some transformations and arrive at the homogeneous system of 

Kc?3 linear equations 

5 &k’o)&, = 0, 

k=3 
k$3Dip)6ck=o (i=L...,rl) (17) 

Here Dir(') and Dik(') are values of the Jacobian 
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a% / ack a’pi / ac, a'pi i acl 
Dir= ahlaCk ah 1 ac2 ah 1 acl 

(a~l/ack)tzt, (a'?l/aclh=to (adacl)t=t n 

for !I~- ¶I0 and ql- qll . 
For further transformation of the Jacobian D,, 

titles 

,1--z,.. .( 12 

(,I 3,. . . ( 211 i 
(IS) 

we make use of the iden- 

41 b (et Cl, - * ** can), Cl, l - -, cpnl = Ql, Wi 

Qi 1% (419 Cl* * - -3 CPd, Cl, . - -9 cznl -(pi (q1, Cl, * . ., c2n) (i = 2 , * - *1 n) (20) 

Differentiating the left- and right-hand sides of these Identities with 
respect to an arbitrary constant oL , we obtain 

84, dT+aCsk=o (k = 1,. . ., 3) (‘I) 

From Equations (21) we determine aT/bcI, 
tities into Equations (22). We then have 

and then substitute these quan- 

acpi aqi 
zk = G 

aql aqi aql -1 ---_ 
( i act & aT 

(i =2,.. ., n; k = I,..., 2/z) (23) 

the%%?: ~$:E~nsa~!?<~k 
in Expression (18) for the Jacobian D,, on 
converting In them from independent variable 

q1 to the Independent varla;le t by replacing 7 by t, and then substi- 
tute the expression D,, thus transformed Into Equations (17), the latter 
become 

5 
&,$0)6cl, = 0, 'i: Bik(1)6Ck SO (24) 

k=3 k=Y 

(i = 2,/. . .) 12) 

where Bik"' and B<k(') are the values of the Jacobian 

aqifacl aq,~ac, aqiiack k/at 

B, = h/h wac2 a!d a?k aq,iat . 
ak 

(aq1/ acl)t=t, (a~l/a~2)~=to (aewt__to 0 (;z",;-;;;;, ) (25) 

ah j ac; ah J acz ah / ack I, 

for t = t, and t = t, . (We note that t, is the Instant at which the 
system attains the kinetic focus 
tory (9); 

MI, proceeding along the Initial tra ec- 
the time of the travel from & to M, along trajectory (10 J may, 

generally speaking, not coincide with the time of motion along the Initial 
trajectory). 

The system of homogeneous equations (24) admits of a nontivlal solution 
for bo3,..., boaa if Its determinant vanishes, I.e. If 

B, ',"' (') 3. B,,?) . . . B 2. 2n 
. . . . . . . . . . . . 

B, ',"I B, &“’ . . .B, $11 
A(tl,to)= ' ' 

B, p' B, '," 
-0 

. . . B, ',A --- (26) 

. . . . . . . . . . . . 
B (1, E (1) 

n, .3 Bn ',it n.4"' , I 

Having determined the root t, of Equation (26) which Is closest to 
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f-0 fb> to 1 we obtain the instant at which the 
to the position of the conservative system at 

kinetic focus (*) conjugate 
t = t, for isoenergetic tra- 

Jectories is attained. To determine the coordinates of the kinetic focus, 
one must substitute the resulting value of t, into the equations of motion 
of system (4). 

Example 1. A material point of mass m = 1 is moving in a con- 
stant gravitational field. The equations of the point's motion are 

'I, -7 I:1 -I- C.$, i& --z rzi :- ,,,t - 1:$ gt’ w 

The total mechanical energy is 

1L r= 'jz (c22 + cqz -I- Zgc,) ("8) 

Let us find the kinetic focus conjugate' to the lnltial position of the 
point at the Instant t = t, . Equation (26) In thls case becomes 

1:1,:") Z?,(c) j],,#) 1= c,? ;- a"(c.I - ,$,)(ll -- 111) 

I:,.:(" &11) -= OS 

Ij$') YZ cl‘:, 
("!1) 

11,4’@ z-z c&, n,,(4) == c;zfl -)- f4 (~4 - gbj itI - f,f 

Since 
I 0 0 1 (Q--@) cl n t (c.4- gf) ’ 

1 t C! c:! 1 t 0 c:! 
-n?3 = 1 t, 0 0 

&a==ltnU u 

,ocg g 0 tt r.2 c* 0 

I?, z cg -j- 0” (fit - $j (t - M, a4 = fgl :. f.4 if1 - gt j (t - t,,) 

solving Equation (29) for t, , we obtain 

c..x -I_ Cd? -- c_gto t1 ZTZZ ~_.__-__ - 
g (c4 - gh) 

c 3”) 

In substituting the resulting expression for t, into Equations (2.7), we 
determine the coordinates of the kinetic focus (for to= 0) 

The same result can be obtained through the use of the familiar method 
(see Lur'e's book [4], p.729). 

In the case where we know the the general solution of the system of dif- 
ferential equations of motion of the conservative system and where this solu- 
tion represents a Cauchy integral, 

'1, = q,(t, PIO, . . .? Q?ZO? QlO’, * * -, Qno’) (i = 1. . . ., n) (::‘) 

the instant t = t, at which the kinetic focus is attained is found as that 
root of the equation (cited without derivation) 

*) If Equation (26) does not have a root t,= to, then a kinetic focus does 
not exist. 
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Example 2. Two material polnts of masses m,= m2= 1 connected 
by weightless rigid rod of length L - 1 are moving in a vertical plane In 
a constant gravitational field. The Initial conditions are specified at 
t = to=o. We are to determine the kinetic focus conjugate to the lnltlal 
position of the system. 

For our generalized coordinates ql, qz, q3 we take the two Cartesian 
coordinates of one of the points and the angle of rotation of the rod. The 
equations of motion of the system are of the form 

41 = - '/z Cos (e0.t + 9ao) + (9,; - 1/Z930' sing,,) t + (qlo + I/, co9 q3J 

q2 = --‘/2 sin (q30- t + qsO) - 1/2~t2 -t- (qzo’ i- 1/2 qso’ CDS ‘jr,,) t i- (q30 ;- ‘/z sin 9.J (3.5) 

43 = 930’ t + 430 

The total mechanical energy Is 

h = 1,‘: ($qo’Z -+ po’“) + f [(QIO’-- 9an'sin qso)’ + (yJo’ -+- yao’ c.os y30)1] -I- Jb 2fzL0 + siu ,130) 

Equation (33) In this case Is of the form 

A (t, to)= ;:" 
2423 

I I 32 ,433 

= 0 (3!i) 

where A, (t, k 
Equation f36) Is 

= 2, 3) Is a determinant of the form (34). The root of 

t1=(9i0'2 + 92;) i- (9lo'--- rlso’sin 9ao)" -t (9~0' + 93o’COs q30j2 

g (QZO -I- 430’ cm Qso) 

(37) 

Substituting the resulting value t - t, Into equation of motion (34), we 
obtain the coordinates of the required kinetic focus. 

BIBLIOGRAPHY 

1. Thomson, W. and Talt, P., 
Cambridge, 1890. 

Treatise on Natural Philosophy; Part I, Vol.1, 

2. Bobylev, D.K., 0 nachale Gainll'tona Ill Ostrogradskogo I o nachale nal- 
men'shego delstvlla Lagranzha (On the Hamilton or Ostrogradskll 
principle and the least action principle of Lagrange). 
Sciences, St.Petersburg, 1889. 

Academy of 

3. Suslov, G.K., Teoretlcheskala mekhanlka (Theoretical Mechanics). 3rd 
revised ed., Gostekhlzdat, Moscow-Leningrad, 1944. 

4. Lur'e, A.I., Analltlcheskala mekhanlka (Analytical Mechanics). Flzmatglz, 
Moscow, 1961. 

Translated by A.Y. 


