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The questlon as to the character of the Lagrange action extremum and the
related problem of kinetic focl for iscenergetic trajectories are dealt with
in the book by Thomson and Tait [1], Bobylev's paper [2], and Suslov's book
[3]. Thomson applied the theory of kinetic focl to the study of the orbital
stability of the specified motlon of a conservative system. He was followed
in thils by Routh and Zhukovskii.

The familiar method of determining kinetlc foci for isoenergetic trajec-
tories [ 2] involves expressing the generalized ccordinates ¢p,..., g, of
the system in terms of the coordinate ¢, from the differential equations of
the trajectories in Jacobian form,
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{the primes denote differentiation with respect to ¢,). Here N and
are the potential energy and the total energy of the system, respectively
(n = const) ; a,, are the coeffilclents of the quadratic form which repre-
sents the kinetic energy 7 1n the case of a conservative system. Reallza-
tion of the known method requires one to solve system of differential equa=-
tions (1) in the form
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Here e3,..., ca, are arbitrary constants. The next step is to solve
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for qﬁ‘%. In this equation the subscript O denotes the initlal position
of the system, and the subscript 1 its position which is the klnetlc focus
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conjJugate to the initlal position. However, functlons of the form 22) can be
obtained from trajectory equations (1) only in the simplest cases (due to
the difficulty of integrating Equations (1)). This limits the applicability
of the familiar method (*).

We shall present a method for determining the kinetic focl for isoenerge-
tic systems which 1s based on the direct use of the equations of moticn of
a conservative system (*%).

Iet the totality of functions
gi- g ey o ey) (i =l ) 0

be the general solution-of the system of differential equations of motion of
a conservative system (we shall consider the most general case, 1l.e. that in
which the solution contalns 2n constants but does not represent a Cauchy
integral).

For fixed values of the constants ¢,,..., cea », Equations (4) define some
true path of the system. Supplementing the constants with the infinitely
small increments (variations ée¢, , we obtaln the path

G* = qll, o - Orgy v v o Cany T Begy) (i=1....,n (5)

which is infinitely close to the path (4) and-is also a true path. The vari-
ations in the generallzed coordinates upon transition from path (4) to path
(5) are on
Sgp== S g (i=1,..., %) (1)
— Jcp
fe==1
Let paths (4) and (5) intersect at some position M, at the instant t =i¢,.
Then the varilations 6c, must satisfy the conditlons
2n

31 (()(]1> §ep =0 (i=1,...,n) (7)

Eliminating the time ¢ from the equations of motion (4), we obtain the
equations of the system trajectory. We express ¢t in terms of the coordi-
nate ¢, from the first equation of system (%),

t=7T (g, C1s « + -y Cop) (8)

Upon substitution from (8) into the other (n — 1) equations of (4), we
obtain the equations of the trajectory which corresponds to path (4),

di== Gl €1 o o ey Copdy €L e o ey Cnl EQ(T, 01, - L, o) (=200 a0 (Y)

Eliminating the time ¢ from the equations of motion for path (5) by a
simllar procedure, we obtain the equations of the trajectory corresponding

to path (5) . (
Qi* ':‘CPi(‘h, (21 + 6011 sy Con + 66211) (L = 27 s n} (10)

The variations in the coordinates upon transition from trajectory (9) to
trajectory (10) are

*) We note that solution (2) of the system of trajectory equations (1) as

a rule cannot be found in cases where one knows the equations of motion

i = qilt, ¢yy o v oy Coq) (i =1,,.., 1), obtained by integrating the differential
equations of motion of the system (second-kind Lagrange equations). In these
cases functions (2) might concelvably be obtained from the equations of
motion by eliminating from them the time ¢ and by expressing two of their
constants (e.g. ¢, and ¢,) in terms of the other constants and in term of
h  of the equations: ¢, = g (tp, ¢ - - s Cam)y h = h (], ..., o). However, the
mathematical difficulties involved usually render thils technique for obtain-
ing functions (2) useless.

**) We note that the kinetic foel for simultaneous paths (1.e. paths of the
type considered in the Hamilton principle) are determined directly from the
equations of motion of the system.
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an
2p; .
87; = E%ﬁck (i=2,..., n) (11)
k=1

Since paths 24) and (5) intersect at t = t, , the corresponding trajec-
torles (9) and (10) also intersect at ¢, = ¢,0 1in the position M, (here g,
is the value of the constant ¢, at ¢ = toi. We arrive at the system of

equatlions on
> (‘3.“&) Sy =0 (i=2,...,n) (12)
k=1 Cx/qi=Q,
The system of (n — 1) equations (12)and Equation
on
S (%}t:tn Scx =0 (13)

k=1
are equivalent in the sistem of »n Equations (7), 1.e. they are fulfilled
for the same values of the variations &c, .

Let us suppose that in addition to the position N, , the infinitely close
trajectories (9) and (10) intersect at yet another position ¥, . If the
same constant value of the total mechanical energy .n 1s retained on both
trajectorles, then the positions M, and N, of the conservative system are
called conjugate kinetic foci for l1soenergetic trajectories.

Since the total mechanical energy A on initial trajectory (9) is a func-
tion of the constants
h=hc ..., cm) (14)

1t follows that trajectories (9) and (10) are isoenergetic provided that
2n o
Sh=> 2% 8¢, =0 (15}
i Z‘ 6ck k
k=1
Trajectories (9) and (10) intersect in the position ¥, (for g¢,= ¢,;) if
the conditlons

an

(5(1,;(1) . }1 (%?l) Scp =0 (i=2,...,n) (16)
— Cklq=q
are fulfilled. k=t "

Thus, the two positions ¥, and M, are conjugate kinetic foci 1f there
exist values of the variations 80,,..., 6C,, which satisfy the homogeneous
system of 21 1linear equations (125,(13),(15) and (16).

Let us reduce the indicated system of 21 equatlions to a system of
(2n — 2) equations. We begin by eliminating the variations &c, and éc,
from Equations (13) and (15),

-1 2n
= [ (90 Oh (09, [ Oh (991 %(‘?ﬁ_r) ]80
ba= I.FC—Z (ac—l)fZIn - 50_1(3—(-‘:>t=t0] ;§3l-30k ((’3—62—) =1, Ocp \ ey /i=t, k
1 2n
By = [ﬁ (%) _ i’l(%) ) > [ﬁﬁ (%) _ fﬁ(%) ]ack
ez \Oc1 /t=t, dey \Ocy [t=1,. — deg \dey Ji=t, ey \Ocy/t=t,

Substituting these values of 8¢, and éc, into Equations (12) and (16),
we car out some transformations and arrive at the homogeneous system of
(2n — 2) linear equations

2n 2n . 17
> DixDex =0, kz DyPoex=0 (i=2....n) o
k=3 =3

Here D;;® and D;,") are values of the Jacobian
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0Q;/ dcy 0@;/ 0cy 0¢;/ 9 e n ‘
Dix=|0n/ ocy ah [ dcs ok ] dcy (=2 ,,”) (18)
(an/ackh:Ju (aql/acﬂl:to (841/6Cﬂt=t" e

for g,=¢,0 and ¢,= ¢, .

For further transformation of the Jacoblan D,, we make use of the iden-
titles )
i [T (qlv Cly o + 0271): C1r 0+ oy Cg‘n] = 4 (19)

2 [T (qu e e v orCandy €1y v o Conl =i (quy €1y - - -y €20) (i=2,...,n (20

Differentlating the left- and right-hand sides of these identities with
respect to an arbitrary constant o, , we obtain

O | 9m Ot (h=1,..., 20) 1)
dck aT 6ck
9gi | 9qi 0T _ 0% (i=2,....n; k=1,...,2n) (22)

6ck 0‘( aCk 60,:

From Equations (21) we determine aT/3c¢c, and then substitute these quan-
tities into Equations (22). We then have

?i*=§ﬂ_‘iaﬁ<@i)”l (=2..., 0 k=1,..., 20 (23)

If we now replace 3gp,/?c, in Expression (18) for the Jacobian D,  on
the basis of Equations (23), converting in them from independent variable
g, to the independent variable ¢ by replacing T by ¢ , and then substi-
tute the expression D,, thus transformed into Equations (17), the latter
become

an m
2 By 8c, =0, Z B W8c =0 (i=2,...,n) (24)
k=3 k=3 f

where B;j;'® and B;' are the values of the Jacobian

0q;/0¢c 0g;/ Bc, 0q; [ Ocy dq;/ ot
B, —|0n/0a 041/ dc, 0q1 / dcy, /oty =2 .. . 5
®=|(9q1/dcr),_,, (0g1/der)y, (001/9ck)yy, O (hms o) @
oh | oy dh | e, dh | dcy 0

for ¢t =ty and t = t, . (We note that ty 1s the instant at which the
system attains the kinetlic focus N,, proceeding along the initial trajec-
tory (9); the time of the travel from N, to N, along trajectory (109 may,
generally speaking, not colncide with the time of motion along the initial
trajectory).

The system of homogeneous equations (24%) admits of a nontivial solution
for 603,..., %05, if 1its determinant vanishes, l.e. 1if

0 0

Bz,(s) Bz.(c_t)' : 'B2.(20n)
[ (0) 0

Al ) = Br @) By By (26)
’ - L (1) w | =

B2, 3 BZ, 4 " B?,Zrz,
(1 (1) 1

Bn,;;) B, V.. .Bn’(wz

Having determined the root ¢, of Equation (26) which 1s closest to
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to {t,> to) , we obtain the instant at which the kinetic focus {*) conjugate
tc the position of the conservative system at ¢ = 2, for isoenergetlic tra-
Jectorles 1s attalned. To determine the coordinates of the kinetic focus,
one must substitute the resulting value of ¢; into the equations of motiocn
of system {(4).

Examp?le 1 . A material polnt of mass m = 1 15 moving in a con-
stant gravitational fleld. The equations of the point's motion are

4 = o o el Gy == vy gt — Ly gt {27)
The total mechanlcal energy is
ho==17y (eg* “+ eg® -+ 2gcy) {28}

Let us find the kinetic focus conjugate to the initial position of the
point at the instant ¢ = t, . Equatlion (26) in thils case becomes

12,10 B:’A(O) o ths(“) =52, Bl =y - g (ea— gly) (1 — 1) )
1" By B = ety BV =2y < eq (ca—gh) (B — §)
Since
o0 1 (ey—gt) 0 0 t (eq—gt)!
1 ¢t 0 o L1 0 es
Baz==\y 4, o 0 W= oy 00 0 ‘
P10 e g L)) g oy o4 U
Bys = ¢® -} g (ca— gt) {t — o), Bog== 02l -1 eg{eg— gt (E—tu)
Solving Equation (29) for ¢, , we obtain
h= b (3)

In substituting the resulting expression for ¢; into Equations (2.7), we
determine the coordinates of the kinetic focus (for to= O)

w62 - a2 LR
q1 == €1 -~ _;{__z‘~'ca‘!__/. , (21 == C3 —I-' 947____)_’__ 3H
gy 2gcq®

The same result can be obtained through the use of the familiar method
(see Lur'e's book [4], p.729).

In the case where we know the the general solution of the system of dif-
ferential equations of motion of the conservative system and where this solu-
tion represents a Cauchy integral,

¢ = qits Guo- - - +» Gnos q105 + « +» qno’) (i=1....,n) (32)
the instant ¢ = t; at which the kinetic focus is attained 1is found as that
root of the equation (cited without derivation)
].iz_) Aig:‘; . » . "1'271
E;Igg IR £ S §

At tg) =
e
|
:‘lu‘,z Syttt Tnn
Voqu/ dqu’ 01t/ Bgue” gy ! dqu’
"!i!.‘ = ag; /o O (f([i,/ai (l, =2 ....n) 134
O [dqyy Ohjdqry’ Bqi/0qy
which is closest to g

*) If Equation (260) does not have a root t,= t,, then a kinetlc focus does
not exist.
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Example 2 . Two material points of masses my= m,= 1 connected
by welghtless rigid rod of length £ = 1 are moving in a vertical plane in
a constant gravitational field. The initial conditions are specified at
t = tg= 0O . We are to determine the kinetlc focus conjugate to the initial
position of the system.

For our generalized coordinates ¢,, ¢, 4, we take the two Cartesian
coordinates of one of the points and the angle of rotation of the rod. The
equations of motlon of the system are of the form

gy = — 1/, c05 (g30't + g30) + (g0 — /5030 Singg0) ¢ 1+ gy 1/, cOs T30

gz = —1/, 8In (gs” £ + gg0) — 12822 4 (ga0" - 1/3 qa0 €OS G30) £ 4~ (gup - 1/, sin gz9)  (35)

9= gao ¢+ qao

The total mechanilcal energy 1is

R=1a(q10" - g20%) + —1— [(q10" — qa0" sin gs0)* - (720" - Ga0” €OS 730)°] - £ ¢ 2720 4 SiQ 730)

Equation (33) In this case 1s of the form
‘422 ‘423
Asz  Asz

where A,, (L, # = 2, 3) is a determinant of the form (34). The root of
Equation '(36) is

A(t, ) =

=0 (34)

(q10" -+ g20°) 4 (910" — q30” SN ga0)® - (q20” -+ 730” COS ga0)? (37)
£ (2g20" - q30” €08 g30)

Substituting the resulting value ¢ = ¢, into equation of motlion (34), we
obtaln the coordinates of the required kinetic focus.

h=
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